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NOD-like receptor signaling and 
inflammasome-related pathways 
are highlighted in psoriatic 
epidermis
Mari H. Tervaniemi1,2, Shintaro Katayama3,4, Tiina Skoog3, H. Annika Siitonen1,2, Jyrki Vuola5, 
Kristo Nuutila6, Raija Sormunen7, Anna Johnsson8, Sten Linnarsson8, Sari Suomela9, 
Esko Kankuri6, Juha Kere1,2,3,4 & Outi Elomaa1,2

Psoriatic skin differs distinctly from normal skin by its thickened epidermis. Most gene expression 
comparisons utilize full-thickness biopsies, with substantial amount of dermis. We assayed the 
transcriptomes of normal, lesional, and non-lesional psoriatic epidermis, sampled as split-thickness 
skin grafts, with 5′-end RNA sequencing. We found that psoriatic epidermis contains more mRNA 
per total RNA than controls, and took this into account in the bioinformatic analysis. The approach 
highlighted innate immunity-related pathways in psoriasis, including NOD-like receptor (NLR) signaling 
and inflammasome activation. We demonstrated that the NLR signaling genes NOD2, PYCARD, 
CARD6, and IFI16 are upregulated in psoriatic epidermis, and strengthened these findings by protein 
expression. Interestingly, PYCARD, the key component of the inflammasome, showed an altered 
expression pattern in the lesional epidermis. The profiling of non-lesional skin highlighted PSORS4 and 
mitochondrially encoded transcripts, suggesting that their gene expression is altered already before the 
development of lesions. Our data suggest that all components needed for the active inflammasome are 
present in the keratinocytes of psoriatic skin. The characterization of inflammasome pathways provides 
further opportunities for therapy. Complementing previous transcriptome studies, our approach gives 
deeper insight into the gene regulation in psoriatic epidermis.

Psoriatic skin is characterized by the hyperproliferation and abnormal differentiation of keratinocytes and infil-
tration of inflammatory cells. Components of the cornified envelope, the outermost layer of epidermis, are pre-
maturely synthesized in the spinous layer that is thicker and disorganized in psoriasis. The inflammatory infiltrate 
consists mainly of dendritic cells, macrophages, and T cells in the dermis and neutrophils with some T cells in 
the epidermis1,2. Gene expression in the epidermis is dramatically altered during the pathogenesis of psoriasis. 
For example, several genes of the epidermal differentiation complex (EDC) region (1q21) are upregulated in 
the psoriatic lesions. These include genes that play a role in the generation and maintenance of the epidermis: 
cornified envelope precursors (e.g., small proline-rich proteins; SPRRs), late cornified envelope proteins (LCEs), 
and signaling proteins (e.g., sS100 calcium-binding proteins; S100s). The EDC region also contains the psoriasis 
susceptibility locus 4 (PSORS4)3,4.

The regulation of inflammation in the psoriatic skin requires cross-talk between the keratinocytes and the 
immune cells. Keratinocytes produce several anti-microbial peptides and proteins (e.g., LL37, β -defensis, and 
interferon-γ ) that attract immune cells and shape their functions. They also respond to immune cell-derived 
cytokines, such as interferons, interleukin-17, and the interleukin-20 family of cytokines, and in turn produce 
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proinflammatory cytokines (interleukin-1 and TNF-α )1. In addition, they recognize pathogens and endogenous 
cellular stress signals via pattern recognition receptors (PRRs): e.g., NOD-like (NLR) and RIG-like receptors 
(RLR), and therefore mediate immune responses5.

Several microarray studies of the psoriatic lesional skin have revealed a large number of differentially 
expressed genes (DEGs) in comparisons with control and non-lesional skin6,7. Recently, RNA sequencing 
(RNAseq) has provided a new alternative to microarrays; so far, two RNAseq studies on psoriasis have been 
published8,9. However, most of the previous psoriasis transcriptome analyses used full-thickness skin samples. 
Here we aimed to focus on epidermal changes in psoriasis. We utilized RNA 5′ -end targeted sequencing for 
split-thickness skin grafts (SG) that are composed of the epidermis (Supplementary Figure S1) and include much 
less dermis than the full-thickness samples. We collected samples from the psoriatic lesional and non-lesional 
skin from patients and healthy skin from controls. We also employed data normalization with synthetic spike-in 
RNA, which enables more accurate comparison of gene expression in heterogeneous samples where total mRNA 
levels per cell may be highly different10–12. Our results show the power of RNAseq over the microarray studies, 
providing a more comprehensive view of altered signaling pathways both in non-lesional and lesional psoriatic 
skin. The sensitivity of the RNAseq method, together with the skin graft samples, allows a more in-depth iden-
tification of altered components in each pathway, making it possible to get a better overall understanding about 
affected pathways and networks in psoriatic epidermis.

Results
RNAseq of psoriatic skin grafts identified a substantial number of differentially expressed tran-
scripts. Total RNA samples of 10 ng, extracted from nine control (C), five psoriatic non-lesional (PN), and 
six lesional (PL) SGs (Table 1, Supplementary Table S1), were subjected to 5′ -end RNAseq10. For differential 
expression analysis, we employed the SAMstrt statistical package, which is based on synthetic spike-in RNA 
normalization of data11,12.

We estimated the dissimilarity between the samples by principal component analysis (PCA) (Fig. 1a), which 
illustrates significant overlap of the healthy skin samples (PN and C) but separation from the lesional samples. 
Some non-lesional samples clustered between the control and lesional samples, suggesting changes already in 
non-lesional skin.

The group-wise (GW) comparisons of transcripts between lesion and control (PLvsC) or non-lesion (PLvsPN) 
revealed 2436 and 3541 upregulated and 2550 and 494 downregulated differentially expressed transcripts 
(DETs), respectively (Supplementary Table S2a–f) (Fold Change (FC) >  1.5 and < 0.75, False Discovery Rate 
(FDR) <  0.05). Positional analysis with Gene Set Enrichment Analysis (GSEA)13 revealed, in both comparisons, 
the enrichment of upregulated transcripts from PSORS4 locus (Supplementary Table S3). GW comparison of 
non-lesion with control skin (PNvsC) revealed 35 DETs (Supplementary Table S2). Of the DETs from all com-
parisons, we selected classes = , c, j, e, and o (71% of all classes, Supplementary Table S2) to represent the genes 
(DEGs). We identified 2720, 2610, and 25 DEGs from the PLvsC, PLvsPN, and PNvsC comparisons, respectively 
(Fig. 1b). We also compared gene expression pair-wisely (PW) between lesional and non-lesional skin from each 
psoriatic patient separately (data not shown), and analyzed the DEGs that were common to all patients.

Expression profiling of lesional psoriatic skin highlighted functions involved in epidermal 
homeostasis. Using the Database for Annotation, Visualization and Integrated Discovery (DAVID)14 and 
WebGestalt15 tools, we analyzed the DEGs from the PLvsPN and PLvsC comparisons (GW). The comparisons 
gave similar results (Supplementary Table S4). Therefore, we analyzed the DEGs that are shared in these two 

Control Age Sex
02C 69 F
04C 69 F
05C 64 F
07C 65 M
09C 47 F
10C 53 F
11C 45 F
12C 65 M
14C 65 M       

Psoriasis patients Ao Psa Medication Topical treatment PASI Type and severity
02P 62 F 17 0 0 0 9.0 small plaque, moderate
03P 64 M 9 0 adalimumab mometasone 13.3 plaque, severe
05P 65 F 6 0 0 betametasone/salisylic acid, calcipotriene 10.0 plaque, guttate, moderate
06P 20 M 15 1 0 calcipotriene/betamethasone 14.7 plaque, moderate
08P 50 M 25 1 methotrexate 0 14.8 plaque, guttate, severe
09P 60 M 30 0 0 calcipotriene/betamethasone 11.9 plaque, moderate

Table 1.  Disease characteristics and medical treatments. Abbreviations: 0, No; 1, Yes; F, female; M, male; Psa, 
Psoriasis arthritis; PASI, Psoriasis Area Severity Index; Ao, Age of onset.
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comparisons (the intersection of PLvsPN and PLvsC, Fig. 1b). The functional annotation analysis of upregulated 
genes from the intersection highlighted gene ontology (GO) groups related to epidermal differentiation, including 
the LCE and SPRR genes. Functions, such as defense response, oxidoreductase, protease, and lipid degradation were 
among the most significant clusters as well. The analyses also identified CARD (CAspase Recruitment Domain) 
and caspase gene families. The most highly upregulated genes of lesional samples were enriched especially in 
defense response and hydrolase (data not shown). KEGG pathway analyses identified e.g., lysosome, NLR, and RLR 
signaling (Figs 1c and 2, Supplementary Figure S2a,b).

The analysis of the upregulated genes from the GW-PLvsPN comparison highlighted GOs related to mitochon-
dria and oxidative phosphorylation that showed enrichment in the PW comparison as well, but were not among 
the most significant and largest groups in the GW-PLvsC comparison. This might result from the heterogeneity of 
the patients (Table 1). We analyzed the upregulated genes of PLvsPN by GSEA as well (Supplementary Table S4k). 
These results are consistent with the DAVID and WebGestalt analyses.

The intersection of the GW-PLvsPN and -PLvsC (Fig. 1b) contained 220 downregulated genes that were 
enriched in such functions as the extracellular matrix, blood vessel development, and cell junction, which may also 
be a reflection of the lower proportion of dermis in the PL samples, instead of real downregulation of the genes. 
The pathway analysis recognized pathways in cancer (Supplementary Figure S1c), cytokine-cytokine receptor inter-
action, and focal adhesion as well. Separate analyses of the downregulated genes from PLvsPN and PLvsC gave 
rather similar results with the intersection of these two comparisons (Supplementary Table S4a–g). However, 
PLvsC recognized many more DEGs than PLvsPN (1473 and 261, respectively); the enrichment analyses thus 
revealed pathways that were not recognizable in the PLvsPN comparison, such as Wnt, TGF-beta, and Notch 
signaling that all have been identified in previous studies on psoriasis16.

Pathways related to innate immunity were highlighted in psoriatic lesional skin. NLR signal-
ing was highlighted in all the comparisons with lesional samples (GW-PLvsC, GW-PLvsPN, and PW-PLvsPN) 
(Figs 1c and 2a, Supplementary Figure S2a). RLR signaling and cytosolic DNA sensing pathways rose up as well. 
All three pathways shared several components (Table 2). The DEGs (PLvsPN) belonging to the NLR signaling 
included highly upregulated transcripts: NOD2, CARD6, CARD18, CASP5, IL1B, IL8, and CXCL1 (FC >  1 ×  108). 
Also several other components involved in the NLR signaling were identifiable, such as NLRP10, NLRX1, CASP1, 
CASP8, and PYCARD (ASC). Most of these genes were identifiable in the PLvsC comparison as well. Furthermore, 
the receptors of the cytosolic DNA sensing and RLR pathways; DNA-binding receptors AIM2 and IFI16 and RNA 
helicase proteins IFIH1 and DDX58 (RIG-I), were induced in the lesional samples. Also several other RLR-related 
transcripts were upregulated, including ISG15 and CYLD (Table 2).

We showed recently, by qPCR, that our RNAseq protocol enables the accurate quantitation of gene expres-
sion in skin12. Patient samples of the present study were processed and analyzed at the same time as samples of 

Figure 1. Expression profiling of lesional and non-lesional psoriatic and control skin by RNAseq.  
(a) Principal component analysis demonstrates clustering of the spike-in normalized sample groups PL (red), 
PN (blue), and C (green). Percentages are contribution ratios. The three libraries have different symbols; L247 
and L248 indicate Run1 and L293 Run2 (description in Supplementary Table S1) (b) Venn diagram of DEGs 
from the three comparisons: PLvsPN, PLvsC, and PNvsC (FC >  1.5 or <  0.75, FDR <  0.05). The most significant 
GO categories are shown (red arrow indicates up- and blue downregulated). (c) Enriched KEGG pathways of 
DEGs that are common to the PLvsC and PLvsPN comparisons (FDR <  0.25).
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the previous study Katayama et al. Here, we validated the upregulation of CARD6, IFI16, PYCARD, and IL8 in 
lesional skin samples by qPCR (Supplementary Figures S3 and S4a). We also used immunohistochemistry to 
examine and verify the expression and localization of the proteins encoded by the differentially expressed genes 
NOD2, PYCARD, IFI16, CARD6, and NLRP10 (Fig. 3a, Supplementary Figure S4). We selected these proteins 
in particular because their expression pattern has not been thoroughly studied in psoriatic skin before, or it has 
remained unclear. Our antibody staining demonstrated that in most lesional samples; NOD2 expression was 
induced in the epidermis, including keratinocytes, when compared with the non-lesional or control samples. In 
the psoriasis non-lesional and lesional skin: expression varied between individuals (Supplementary Figure S4). In 
the non-lesional samples, especially, there was more variation from weak to increased expression. On the cellular 
level, NOD2 was expressed in cytoplasm and on the cell membrane in some cells. Epidermal PYCARD staining 
was observed in all sample groups. The expression level and pattern, however, differed between the sample groups 
(Fig. 3a): in lesions the expression was strongly induced in cytoplasm, and in some cells in nuclei. The control 
skin exhibited only a few PYCARD positive nuclei, and its overall staining was weaker than in the lesions. In the 
non-lesional skin, the overall PYCARD staining was stronger than in controls and some samples showed nuclear 
staining. The cytoplasmic PYCARD induction of lesional samples was observed also in immuno electron micros-
copy (IEM) (Fig. 3b, Supplementary Figure S4). Interestingly, in some keratinocytes the gold labeling formed 
clusters (diameter around 500 nm) that localized with the cytoplasmic membrane structures, possibly small vesi-
cles. The IFI16 staining was weak in most controls, whereas strongly upregulated in lesional epidermis and local-
ized into cell nuclei (Fig. 3a). In some controls, we detected a weak cytoplasmic IFI16 expression and only a few 
positive nuclei. In contrast, in the lesional and non-lesional samples; cytoplasmic expression was hardly detecta-
ble. In the non-lesional samples, the expression varied from weak to strong and was localized to nuclei. We found 
strong cytoplasmic CARD6 expression in keratinocytes of lesional samples (Supplementary Figure S4). CARD6 
was detectable also in nuclei, and as a granular cytoplasmic staining, possibly representing mitochondria, as 
shown by immunofluorescent staining of cultured keratinocytes (Fig. 3c). The control skins were almost CARD6 
negative (Fig. 3a). The non-lesional samples resembled controls but some showed induced CARD6 expression 
in epidermis. The IEM of lesional skin confirmed the mitochondrial localization in keratinocytes (Fig. 3c) and 
revealed CARD6 expression in cell-cell contacts as well (Supplementary Figure S4). We found a pronounced 
cytoplasmic NLRP10 staining all over the epidermis, and could not observe any difference between psoriatics and 
controls (Supplementary Figure S4e). Our staining result agreed with previous findings in normal skin17.

RNAseq of skin graft samples refined previous findings in psoriasis. We compared our RNAseq 
data of SG samples with previous microarray and RNAseq studies. First we compared our data with two large 
microarray studies by Gudjonsson et al. and Tian et al.6,7 (Fig. 4a; Supplementary Table S5), conducted with 
full-thickness skin samples of the psoriatic lesional and non-lesional skin, and detected 2232 DEGs that were 
identifiable only in our study. The recent RNAseq by Li and colleagues9 differs from our study in several ways 
including sample number and type, sequencing, and normalization methods. Instead of SGs, they used the 
full-thickness biopsies of lesional and control skin. Similar functional categories and pathways were identifiable 

Figure 2. Heat maps of NLR signaling and lysosome pathways. Gene expression in PL, PN, and C samples 
(Run1). Color key: red represents upregulated and blue downregulated expression (row Z-score). Run2 heat 
maps are shown in Supplementary Figure S2.
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in both RNAseq studies. The shared part included 1566 DEGs, but numerous unique transcripts were recognized 
as well; 1200 and 7515 DEGs in the SG and full-thickness skin, respectively (Fig. 4b, Supplementary Table S5). 
Genes that were unique for SGs were enriched in such categories as Wnt signaling (e.g., PPR2R1B, PPP2CA, 
APC), ubiquitin proteasome pathway, lysosome (e.g., V-ATPases, CTSA, CTSD), and focal adhesion (e.g., IGF1R, 
ITGA2, COL5A3) (Supplementary Table S5c). In NLR signaling we identified DEGs that were not recognized in 
the full-thickness samples with the FC ≥  1.5 (Table 2; e.g., CASP1, CASP8, CARD18, CYLD, and TNFAIP3). GOs 
related to lymphocyte (upregulated), muscle, or secretion (downregulated) were among the top enrichment groups 
in the full-thickness samples9 whereas in SGs they were missing or not among the significantly altered ones 
(Supplementary Table S5). This may result from the different proportions of dermis in the SG and full-thickness 
samples.

In a recent microarray study; Mitsui et al. examined gene expression in epidermal and dermal samples collected 
from the lesional and non-lesional skin by microdissection18. When we compared our DEGs with their epidermal 
data, 517 were common and the number of unique DEGs in SGs was 2339 and 679 in microdissected epidermis 
(Fig. 4c, Supplementary Table S5d,f). Our RNAseq identified, for example, several LCE, SPRR, and KRT genes that 
were undetectable in the microarray assay. Among our unique transcripts we identified 13 DEGs belonging to the 

Symbol Gene name FC FDR A B C D
Mitsui 
FC18 Li FC9

AIM2 absent in melanoma 2 4.6E + 08 0.00 x 6.4
ATG5 autophagy related 5 5.3 4.19 x 0.9
AZI2 5-azacytidine induced 2 1.5 0.50 x 1.2
BIRC3 baculoviral IAP repeat containing 3 2.8 1.76 x 2.4
CAMP cathelicidin antimicrobial peptide 5.6E + 09 0.00 x x 7.7
CARD6 caspase recruitment domain family, member 6 1.0E + 09 0.00 x 3.3
CARD18 caspase recruitment domain family, member 18 1.1E + 09 0.34 x 1.3
CASP1 caspase 1, apoptosis-related cysteine peptidase 3.0 0.00 x x 2.4 1.5
CASP5 caspase 5, apoptosis-related cysteine peptidase 7.6E + 08 0.00 x 9.8
CASP8 caspase 8, apoptosis-related cysteine peptidase 3.1 2.74 x x 1.5
CASP10 caspase 10, apoptosis-related cysteine peptidase 2.5 0.41 x 1.6
CCL4 chemokine ligand 4 2.2E + 09 0.00 x 5.3
CXCL1 chemokine ligand 1 5.6E + 08 0.00 x 8.0 70.6
CYLD cylindromatosis (turban tumor syndrome) 2.2 2.89 x 3.3 1.2
DDX3X DEAD box polypeptide 3, X-linked 1.7 1.74 x 2.6 1.1
DDX58 DEAD box polypeptide 58 3.0 0.23 x x x 2.9 2.5
HSP90B1 heat shock protein 90kDa beta (Grp94), 1 2.0 4.98 x 1.1
IFI16 interferon, gamma-inducible protein 16 2.4 0.23 x x 2.4
IFIH1 interferon induced with helicase C domain 1 4.3E + 08 0.26 x 2.8
IKBKE inhibitor of k light pp enhancer in Bcells, kinase e 1.9 0.57 x x 2.0
IL1B interleukin 1, beta 1.1E + 09 0.00 x x 6.8
IL8 interleukin 8 7.3E + 09 0.00 x x 7.4 344.2
IRF7 interferon regulatory factor 7 2.3E + 08 1.65 x x 2.8 5.4
ISG15 ISG15 ubiquitin-like modifier 7.2 0.00 x 4.4 5.5
MAPK8 mitogen-activated protein kinase 8 7.2E + 08 0.07 x x 1.1
MAPK13 mitogen-activated protein kinase 13 2.9 0.23 x x 2.4 1.5
NLRP10 NLR family, pyrin domain containing 10 3.5 0.96 x x NA
NLRX1 NLR family member X1 5.9 0.00 x x 2.5 2.2

NOD2 nucleotide-binding oligomerization domain containing 2
6.0 0.00 x 3.4 3.1

4.3E + 08 0.75 x
POLR3B polymerase (RNA) III polypeptide B 2.3 1.30 x 1.3
POLR3G polymerase (RNA) III polypeptide G (32kD) 5.7 0.00 x 2.8 4.3

PYCARD PYD and CARD domain containing
4.1 1.98 x x 2.1 2.0
3.0 0.31 x x

PYDC1 PYD (pyrin domain) containing 1 3.6 0.16 x 2.0
SUGT1 SGT1, suppressor of G2 allele of SKP1 1.6 0.42 x 1.2
TAB1 TGF-b activated kinase 1/MAP3K7 binding prot 1 1.60 4.67 x 0.8
TANK TRAF family member-associated NFKB activator 1.73 0.16 x 2.1 1.0
TRIM25 tripartite motif containing 25 2.61 0.75 x 1.6

Table 2.  NLR (A), RLR (B), cytoplasmic DNA-sensing (C) pathway components, and other inflammasome-
related genes (D) that show upregulation in lesions (GW-PLvsPN). Abbreviations: TFE, Transcript First 
Exon; FC, Fold Change; FDR, False Discovery Rate (%).
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NLR signalling, these including genes such as CARD6, CARD18, CASP8, IL1B, and PYDC1. Transcripts for NOD2, 
PYCARD, DDX58, CASP1, and IL8 were upregulated in both studies (Table 2). Only 3% of our DEGs were detectable 
in their dermal fraction, in agreement with the amount of dermis in our SGs (Supplementary Table S5e).

Figure 3. Induced expression of NOD2, CARD6, PYCARD, and IFI16 in psoriasis lesions.  
(a) Immunohistochemistry shows stronger NOD2, CARD6, PYCARD, and IFI16 staining in PL (upper) than 
in controls (lower). PN (middle) and C are almost negative for NOD2 and CARD6. IFI16 is predominantly in 
nuclei of PL and PN. In controls IFI16 expression is weak and cytoplasmic. PYCARD is strongly induced in 
cytoplasm but also some nuclei are positive in PL and PN. Controls exhibit only a few PYCARD positive nuclei. 
Scale bar 50 μm. (b) IEM of PL shows PYCARD clusters in cytoplasm. (c) Immunofluorescence of keratinocytes 
colocalizes CARD6 with a mitochondrial MTCO2. (d) IEM of psoriatioc lesional samples also localized CARD6 
in the mitochondria (arrow head).

Figure 4. Comparison of our RNAseq data with other transcriptomics analyses of psoriatic skin. Venn 
diagrams of RNAseq from our SGs (either PLvsC or PLvsPN) (Tervaniemi) in comparison with (a) micro arrays 
(PLvsPN) (Gudjonsson and Tian) and (b) RNAseq (PLvsC) of full-thickness samples (Li) and (c) micro array of 
microdissection samples (PLvsPN) (Mitsui). The unique genes of each assay were enriched in the pathways (Li) 
or GOs (Mitsui) presented, although similar pathways were identifiable in the different studies.
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We aimed at minimizing the amount of dermis when collecting the SGs. With our dermatome technique, 
however, the proportion of dermal compartment varied between the samples and still remained higher in the PN 
and control than in the PL samples (Fig. 3, Supplementary Figure S1). We checked whether the variation of the 
amount of dermis between the skin samples has an effect on our RNAseq results, by comparing the expression 
of fibroblast specific genes, COL3A1 and COL1A2, between the three sample groups (Supplementary Figure S5). 
We could see a slight decrease in the expression of these markers in some of the samples. As we have much less 
dermis in our samples than there had been in the full-thickness samples, the relative decrease of the dermal pro-
portion in the lesional samples, when compared with the non-lesional ones, is more pronounced in SGs than in 
full-thickness samples. The architecture and thickening of the epidermis might create some downregulation of the 
dermal components as well. The number of downregulated DEGs in the lesional SG samples, however, is lower 
than the number observed in the full-thickness studies.

Expression profiling of non-lesional skin showed upregulation of PSORS4 and mitochondri-
ally encoded transcripts. Comparison of non-lesional skin with control showed that 35 transcripts were 
differentially expressed (Supplementary Table S2a and b): 28 were upregulated (FC >  1.5) and 7 downregulated 
(FC <  0.75). Interestingly, 12 of the transcripts mapped to the known PSORS loci; PSORS4 was the most rep-
resented among the upregulated transcripts (Supplementary Table S3b) as shown also in previous assays. The 
upregulated genes (Fig. 5a, Supplementary Figure S6) were enriched especially for keratinocyte and epidermis dif-
ferentiation but also for defense response (Fig. 1b; Supplementary Table S4c). Most of the upregulated transcripts 
(PNvsC) were induced also in the lesions (PLvsC), except CNTNAP3B and the mitochondrial transcripts (ChrM) 
named in the alignment step as TVAS5, both of which have not been implicated in psoriasis before (Fig. 5a, 
Supplementary Figure S6). The most frequent TVAS5 reads map at the start site of mitochondrially encoded 16S 
ribosomal RNA (MTRNR2 gene) (Supplementary Figure S6b,c) that also encodes for an antiapoptotic polypep-
tide called humanin.

Among the downregulated genes (PNvsC), we identified only three DEGs (Table S2b) one of which was the 
nuclear gene homolog of MTRNR2, namely MTRNR2L1 (humanin-like). Because of the high sequence similarity 
between humanin-like genes19, the specific quantitation of humanin and its derivate by qPCR was difficult. We 
demonstrated by immunohistochemistry (Fig. 5b, Supplementary Figure S6e) that humanin and humanin-like 
proteins are strongly expressed in keratinocytes in all the three sample types but we were unable to detect any 
difference between the psoriatic and healthy skin. Based on our RNAseq data, however, the gene expression of the 
peptides is dysregulated in the non-lesional skin, suggesting that the regulation of apoptosis might be disturbed 
already before the lesions develop. It remains to be studied whether humanin and its derivates play a role in the 
pathogenesis of psoriasis.

Discussion
Many studies are available that compare the transcriptomes of psoriatic and healthy skin using full-thickness 
biopsies. Our approach is different from such studies in two aspects: we focus on the epidermis and use a bio-
informatics approach that takes into account the systematically higher amount of mRNA per total RNA in pso-
riatic skin. Our results highlight functions related to epidermal homeostasis in lesional skin. The most obvious 
difference between full-thickness and SG transcriptomes of psoriasis was that lymphocyte, muscle contraction, 
and secretion were not highlighted in SGs. The difference likely results from the large amount of dermis in 
full-thickness biopsies, especially as the latter two gene sets are enriched among the downregulated genes in 
lesions. Recently, it has been suggested that dermis-derived transcripts are driven downward by the expansion 
of epidermis in psoriatic lesions when compared with healthy skin9. Similar effect was also observable in the SG 
samples; the relative proportion of dermis is higher in the healthy skin samples than in the lesional samples, even 
though the amount of dermis is much lower in SGs than full-thickness samples. Another reason for differences 
in the transcriptome results might be the gene length bias20, which we avoid with the use of the 5′ -end targeted 
RNAseq method. We conclude that the advantage of skin graft samples is to get results that highlight changes in 
epidermal gene expression and thus improve resolution of the expression analysis.

We identified more DEGs for each pathway than previous microarray studies. Recognition of the NLR signa-
ling (Fig. 6), including inflammasome activation, is a good example of the power of RNAseq. Of the dysregulated 
genes involved in the NLR signaling, we studied NOD2, PYCARD, IFI16, CARD6, and NLRP10. Their induction 
in lesional skin is identifiable in previous transcriptome studies9,18 (Table 2), except for NLRP10. Here, we demon-
strated their protein expression in psoriatic epidermis, by using immunohistochemistry. We showed that NOD2 
expression was induced in the psoriatic epidermis, especially in keratinocytes. The risk alleles of NOD2 have 
been linked to several inflammatory diseases, including atopic eczema and arthritis21, but their role in psoriasis 
is still questionable22. NLRs, such as our DEGs NOD2, NLRP10, and NLRX1, operate via RIPK2 by modulating 
the nuclear factor-kB and mitogen-activated protein kinase pathways that lead to the production of chemok-
ines, cytokines, and antimicrobial peptides21,23. CARD6 has not been linked to psoriasis previously though it 
was highly upregulated in our PL. Its function is unclear; it may regulate NOD2-RIPK2 signaling24. Based on 
our immunofluorescence and IEM staining, CARD6 is localized both in the cytoplasm and the mitochondria. 
Interestingly, a small fraction of NOD2 is also associated with mitochondria25.

We identified also several other genes (Fig. 6) that are linked to the inflammasomes, which are infection or 
stress-activated cytoplasmic protein complexes. They regulate CASP1 activity, which is required for the pro-
cessing and maturation of inflammatory cytokines IL-1 and IL-18. They consist of the NLR receptor protein, 
CASP1, sometimes also CASP5, and the adaptor protein PYCARD that is a key component of the inflammas-
omes. The inflammasome assembly is trigged by the interaction of PYCARD with the receptor molecule. Using 
its CARD domain, PYCARD brings pro-CASP1 into close proximity, which initiates CASP1 self- cleavage and 
the formation of the active tetrameric CASP1. Upregulation of PYCARD and CASP1 in lesional skin may promote 
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the formation of large multiprotein complexes consisting of multimers of PYCARD dimers and several CASP1 
molecules. The exact composition of inflammasome depends on the activator that initiates the assembly of the 
inflammasome; receptors are specific for individual activators23. Here, we showed that PYCARD was predomi-
nantly cytoplasmic in lesional epidermis, but in some cells also nuclear. Whereas the control skin exhibited only 
a few positive nuclei, and the overall expression was lower than in psoriasis. In keratinocytes of lesional skin our 
IEM detected cytoplasmic PYCARD clusters that may represent inflammasomes.

The genes for the most studied inflammasome receptors, NLRP1 and NLRP3, were not among our DEGs, but 
they have been associated with psoriasis26,27. We demonstrated that the NLRP10 protein is strongly expressed in 
healthy as well as in psoriatic skin. It may inhibit the inflammasome assembly28 and there is a polymorphism in 
NLRP10 that is associated with atopic dermatitis, but not with psoriasis21,29.

Figure 5. Gene expression of non-lesional psoriatic skin. (a) Heat map of DEGs from the PNvsC comparison; 
gene expressions in samples (PL, PN, and C) of the Run1. Gene name includes class (DEGs:o/e/c) and first exon 
codes. Color key: red represents upregulated and blue downregulated expression according to the color intensity 
(row Z-score). Most of the induced transcripts (PNvsC) are highly upregulated in PL (PLvsC), as PSORS4 
transcripts (yellow). PSORS12 (purple) transcript FLRT3 is downregulated in PN. The most highly upregulated 
transcript in PNs, ChrM_o_FE404545, represents MTRNR2, which shows no induction in PL. Heat map of 
the Run2 is shown in Supplementary Figure S6. (b) Immunostaining with the MTRNR2 (humanin) antibody 
reveals expression in PL, PN, and C skin.
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The DNA-sensing receptors encoded by AIM2 and IFI16, which were upregulated in the lesional samples, 
form an inflammasome with PYCARD (Fig. 4)23,30,31. They are also implicated in psoriasis32–34. Intriguingly, there 
is abundant cytoplasmic DNA in keratinocytes of psoriatic lesions, and thus DNA-sensing receptors may play 
a role in the pathogenesis of psoriasis32,35. AIM2 is among the most highly upregulated PRRs in lesional skin33. 
Here, we showed that IFI16 was also strongly increased in the lesions, and predominantly present in nuclei. This 
agrees with previous findings; IFI1631 possibly activates PYCARD already in the cell nucleus30. It has been sug-
gested that in psoriasis lesions, in a subpopulation of keratinocytes, IFI16 translocates from cell nuclei into the 
cytoplasm, whereas in non-lesional skin it stays in nuclei34. Our immunostaining, however, did not support the 
translocation of IFI16. The most obvious difference was strong nuclear staining in lesions, whereas weak expres-
sion in controls.

RNA-sensing receptors, IFIH1 and DDX58 (RIGI), which were induced in the lesional samples, are well 
known susceptibility genes in psoriasis36,37. DDX58 operates via inflammasome and there is interplay between 
the RLR and NLR pathways; e.g., DDX58 and NOD2 regulate each other (Fig. 4)38. CYLD, a psoriasis candidate 
gene39 and a DEG identified by us, acts in both pathways40,41.

As a summary; we among others have observed that inflammasome and innate immune receptors are upreg-
ulated in keratinocytes of psoriatic skin36,42,43. Inflammasome activation, however, is regulated at several levels23 

Figure 6. Model of NLR signaling in keratinocytes of psoriatic skin. Exposure to DAMPs and PAMPs 
(damage- and pathogen-associated molecular patterns) triggers activation of NLR signaling and inflammasome. 
NOD2 operates via RIPK2 by activating the NF-kB and MAPKs pathways, leading to production of 
inflammatory mediators. The NLR signaling is also linked to apoptosis and inflammasome activation. The 
latter regulates CASP1; required for the maturation of IL1B and IL18. Inflammasome consists of the NLR 
protein, CASP1, CASP5, and the adaptor protein PYCARD. Also the DNA-binding receptors AIM2 and IFI16, 
and the RNA-sensing protein DDX58, operate via inflammasome. Cytosolic DNA triggers AIM2 and IFI16 
inflammasome, whereas anti-inflammatory CAMP inhibits their function. DEGs upregulated in PLvsPN or in 
both PLvsC and PLvsPN are shown as orange and red, respectively.
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and expression alone does not automatically mean a biological relevance. It is known that normal human kerat-
inocytes constitutively express inflammasome proteins; for instance innate immune receptors are constantly 
monitoring for signs of infection, cellular damage, or stress factors. Based on our results; AIM2 and IFI16 are 
highly expressed inflammasome receptors in psoriasis, whereas NLRP3 was not among the DEGs. Recently it 
was suggested that the basal expression of NLRP3 is not sufficient for the inflammasome activation in resting 
cells. Instead, the NLRP3 expression is transcriptionally induced at first, and only after posttranscriptional mod-
ifications, its inflammasome assembly is activated23. Post-translational modifications, such as phosphorylation, 
ubiquitination, and even proteolysis, are necessary for the activation of certain inflammasome receptors. The 
subcellular location and trafficking of inflammasomal components are also important for the regulation of their 
activity. Therefore, alterations in the expression pattern or subcellular location that we observed with PYCARD 
and IFI16, may suggest that certain types of complexes may form in psoriatic skin. The exact composition and 
activation mechanisms of inflammasomes in psoriasis remain to be determined.

In conclusion, RNAseq with absolute rather than relative RNA quantification, combined with the use of skin 
graft samples, allowed an improved recognition of the altered signaling pathways in psoriasis. Compared with the 
previous RNAseq-based psoriasis studies on the full-thickness skin samples, our approach provided more informa-
tion about the transcriptional dysregulation in the epidermis. A good example is the recognition of the NOD-like 
receptor signaling and functions related to it, such as inflammasome activation in keratinocytes. The 5′ -end RNAseq 
method allowed the precise determination of transcription start sites as well; it remains to be studied whether aber-
rant gene expression patterns that promote the pathogenesis of psoriasis arise from alternative promoter usage.

Methods
Sample collection, RNA extraction, and RNAseq. The Institutional Review Board of the Helsinki 
University Central Hospital approved the collection of skin samples. All subjects involved in this study gave 
written informed consent and the study followed the Declaration of Helsinki Guidelines. Split-thickness skin 
grafts and primary keratinocytes were harvested and processed as previously outlined12,44,45 and the RNAseq of 
control samples was recently described elsewhere12. Briefly, we collected lesional and non-lesional samples from 
six psoriatic patients and normal healthy skin from nine controls (Table 1). Absolute washout period was not 
required. Psoriatic skin samples PL and PN were all from the same location, from buttock. Location of control 
samples varied, as samples were collected from breast reduction and microvascular free flap surgery patients. All 
control samples, however, were from the areas that are normally protected from sun. Split-thickness skin graft 
(SG) samples were harvested by a compressed air-driven dermatome (Zimmer® , Warsaw, IN) by using a fixed set-
ting for thickness (4–6/1000 inches) to obtain samples including the full epidermis. We aimed at getting minimal 
dermis involvement (Supplementary Figure S1). However, some dermis remained in the control and PN samples, 
whereas in the PL samples the amount of dermis was minimal. Skin specimen used for RNAseq and immunohis-
tochemistry were taken from the same larger SG sample, and before the RNA isolation the quality of SG samples 
was examined from haematoxylin-eosin (HE)-stained paraffin sections. Skin sections shown in immunohisto-
chemistry panels in Figs 3 and 5, and Supplementary Figure S1 represent the skin samples used for the RNA 
isolation. Total RNA was extracted by miRNeasy kit (Qiagen) from the skin samples and its quality was controlled 
with Bioanalyzer (RIN for all samples >  8). STRT libraries of PL and PN samples were prepared and sequenced 
at the same time as controls12. The samples were prepared into three different libraries, as demonstrated in 
Supplementary Table S1. Total RNA samples (three replicates for each sample, 10 ng of each replicate) were used 
for RNA sequencing library preparation according to the STRT protocol10, which was adjusted for 10 ng samples. 
The libraries were sequenced using an Illumina HiSeq 2000 instrument. Redundancy was reduced according to 
UMI46, and the non-redundant reads were demultiplexed and trimmed by demlt tool in ruby-bio-gadget (https://
github.com/shka/ruby-bio-gadget). The demultiplexed reads were aligned to hg19 human reference genome, 
ArrayControl RNA spikes and human ribosomal DNA complete repeating unit [GenBank: U13369] by TopHat47. 
The aligned STRT reads were assembled by sample types using Cufflinks48, and 5′ -end regions of the assembled 
transcripts were merged as Transcript Far 5′ -ends (TFEs). TFEs were compared by Cufflinks with UCSC genes to 
annotate. Reads aligned within the TFEs were counted by samples again, and normalized by the spike-in based 
normalization11. Differential expression analysis was performed by SAMstrt11,12. In RNAseq data; extremely high 
FC values such as 1 ×  108 results from the calculation method used in SAMstrt. In the comparison between 
zero transcripts and some transcripts to avoid calculation errors by zero division, SAMstrt adds small random 
numbers to all normalized transcript counts and then calculates the FC. We performed PCA with the scaling but 
non-centering preprocess steps. Correlation of gene expression with PC was estimated by SAMstrt quantitative 
response test. Scores of samples on a PC were given as the quantitative values, and threshold of the significantly 
correlated gene is Local-FDR <  1%.

Quantitative PCR. cDNA synthesis was carried out using random primers and SuperScript III First-Strand 
synthesis system for RT-PCR (18080-151, Invitrogen) according to manufacturer’s instructions. 10–20 ng of 
cDNA (RNA) was applied to each qPCR assay and each sample was run in three replicates. qPCR was carried 
out using an ABI PRISM 7900HT Sequence Detection System with Fast SYBR®  Green Master mix (4385617, 
both from Applied Biosystems) according to manufacturer’s instructions. The primer sequences for PYCARD, 
CARD6, IFI16, and IL8 are shown in Supplementary Figure S3a. RPL13 and GAPDH were used as reference genes 
for normalization.

Immunohistochemistry. Formalin fixed paraffin sections (5 um) were stained with different anti-human 
antibodies using the peroxidase-based ImmPRESS™  Reagent kit (Vector MP-7500) and ImmPACTTMDAB™  
peroxidase substrate kit (Vector SK-4105). Epitope retrieval was carried out by a heat-mediated method in 
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sodium citrate buffer pH 6.0 for 20 minutes. The primary antibodies were: ASC (AdipoGen, AG-25B-0006-C100), 
TMS1 (Proteintech, 10500-1-AP), CARD6 (Novus Biologicals, NBP2-15704), IFI16 (Novus Biologicals, NBP1-
83118), IFI16 (Abcam, ab55328), NLRP10 (Novus Biologicals, NBP1-85556), and Humanin (Thermo Fisher, 
PA1-41325). Normal rabbit IgG was used as a negative control (Dako, X0903).

Immunofluorescence. For immunofluorescence studies, we cultured cells extracted from full-thickness 
samples12. The cells were grown on cover slips with Rat Tail Collagen I (Gibco, Invitrogen) coating, and fixed 
with methanol for 5 min at − 20 °C56. The cover slip samples were incubated one hour at room temperature with 
the MTCO2 (Abcam, ab3298) and CARD6 antibodies. Alexa Fluor 555 and 488 conjugated IgGs (Invitrogen, 
Molecular Probes) were used as secondary antibodies and the nuclei stained with DAPI (Sigma-Aldrich). The 
pictures were taken with Zeiss LSM 5 Duo confocal microscope.

Immunoelectron microscopy. Skin biopsies were fixed with 4% paraformaldehyde-PBS solution for 6 to 
12 h followed by immersion in 2.3 M sucrose-PBS solution. Samples were frozen in liquid nitrogen, and thin 
cryosections were cut with a Leica Ultracut UCT microtome. Sections were first incubated in 0.1% glycine-PBS, 
then in 1% BSA, labeled with antibodies against PYCARD or CARD6 followed by incubation with protein-A gold 
conjugate. Labeling was detected with a Tecnai G2 Spirit transmission electron microscope (FEI Company) and 
Quemesa CCD camera (MSIS GmbH).
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